
LA-UR-21-32412
Approved for public release; distribution is unlimited.

Title: stochprop Documentation, Release 1.0

Author(s): Blom, Philip Stephen

Intended for: Report

Issued: 2022-02-03 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

stochprop Documentation
Release 1.0

P. Blom

Nov 16, 2021

CONTENTS

1 Contents 3
1.1 Authorship & License Info . 3
1.2 Installation . 3

1.2.1 Anaconda . 3
1.2.2 Installing Dependencies . 3
1.2.3 Installing stochprop . 4
1.2.4 Testing stochprop . 4

1.3 Stochastic Propagation Analysis . 5
1.3.1 Empirical Orthogonal Function Analysis . 6
1.3.2 Atmospheric Fitting, Sampling, and Perturbation . 6
1.3.3 Propagation Statistics . 6
1.3.4 Gravity Wave Perturbations . 6

1.4 API . 26
1.4.1 Empirical Orthogonal Function Analysis . 26
1.4.2 Propagation Statistics . 30
1.4.3 Gravity Wave Perturbation Analysis . 34

1.5 References and Citing Usage . 38

Python Module Index 41

Index 43

i

ii

stochprop Documentation, Release 1.0

Simulations of infrasonic propagation in the atmosphere typically utilize a single atmospheric specification describing
the acoustic sound speed, ambient winds, and density as a function of altitude. Due to the dynamic and sparsely
sampled nature of the atmosphere, there is a notable amount of uncertainty in the atmospheric state at a given location
and time so that a more robust analysis of infrasonic propagation requires inclusion of this uncertainty. This Python
library, stochprop, has been implemented using methods developed jointly by infrasound scientists at Los Alamos
National Laboratory (LANL) and the University of Mississippi’s National Center for Physical Acoustics (NCPA). This
software library includes methods to quantify variability in the atmospheric state, identify typical seasonal variability
in the atmospheric state and generate suites of representative atmospheric states during a given season, as well as
perform uncertainty analysis on a specified atmospheric state given some level of uncertainty. These methods have
been designed to interface between propagation modeling capabilities such as InfraGA/GeoAc and NCPAprop and
signal analysis methods in the LANL InfraPy tool.

CONTENTS 1

stochprop Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Authorship & License Info

Authors: Philip Blom

© 2020 Triad National Security, LLC. All rights reserved.

Notice: These data were produced by Triad National Security, LLC under Contract No. 89233218CNA000001 with
the Department of Energy/National Nuclear Security Administration. For five (5) years from September 21,2020, the
Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license
in this data to reproduce, prepare derivative works, and perform publicly and display publicly, by or on behalf of the
Government. There is provision for the possible extension of the term of this license. Subsequent to that period or any
extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irre-
vocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, perform
publicly and display publicly, and to permit others to do so. The specific term of the license can be identified by inquiry
made to Contractor or DOE/NNSA. Neither the United States nor the United States Department of Energy/National
Nuclear Security Administration, nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any data, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.

1.2 Installation

1.2.1 Anaconda

The installation of stochprop is ideally completed using pip through Anaconda to resolve and download the correct
python libraries. If you don’t currently have anaconda installed on your system, please do that first. Anaconda can be
downloaded from https://www.anaconda.com/distribution/.

1.2.2 Installing Dependencies

Propagation Modeling Methods

A subset of the stochprop methods require access to the LANL InfraGA/GeoAc ray tracing methods as well as the
NCPAprop normal mode methods. Many of the empirical orthogonal function (EOF) based atmospheric statistics and
gravity wave pertorbation methods can be used without these propagation tools, but full usage of stochprop requires
them.

• InfraGA/GeoAc: https://github.com/LANL-Seismoacoustics/infraGA

• NCPAprop: https://github.com/chetzer-ncpa/ncpaprop

3

https://www.anaconda.com/distribution/
https://github.com/LANL-Seismoacoustics/infraGA
https://github.com/chetzer-ncpa/ncpaprop

stochprop Documentation, Release 1.0

InfraPy Signal Analysis Methods

The propagation models constructed in stochprop are intended for use in the Bayesian Infrasonic Source Localization
(BISL) and Spectral Yield Estimation (SpYE) methods in the LANL InfraPy signal analysis software suite. As with
the InfraGA/GeoAc and NCPAprop linkages, many of the EOF-based atmospheric statistics methods can be utilized
without InfraPy, but full usage will require installation of InfraPy (https://github.com/LANL-Seismoacoustics/infrapy).

1.2.3 Installing stochprop

Once Anaconda is installed, you can install stochprop using pip by navigating to the base directory of the package
(there will be a file there named setup.py). Assuming InfraPy has been installed within a conda environment called
infrapy_env, it is recommended to install stochprop in the same environment using:

>> conda activate infrapy_env
>> pip install -e .

Otherwise, a new conda environment should be created with the underlying dependencies and pip should be used to
install there (work on this later):

>> conda env create -f stochprop_env.yml

If this command executes correctly and finishes without errors, it should print out instructions on how to activate and
deactivate the new environment:

To activate the environment, use:

>> conda activate stochprop_env

To deactivate an active environment, use

>> conda deactivate

1.2.4 Testing stochprop

Once the installation is complete, you can test the methods by navigating to the /examples directory located in the base
directory, and running:

>> python eof_analysis.py
>> python atmo_analysis.py

A set of propagation analyses are included, but require installation of infraGA/GeoAc and NCPAprop. These analysis
can be run to ensure linkages are working between stochprop and the propagation libraries, but note that the simulation
of propagation through even the example suite of atmosphere takes a significant amount of time.

4 Chapter 1. Contents

https://github.com/LANL-Seismoacoustics/infrapy

stochprop Documentation, Release 1.0

1.3 Stochastic Propagation Analysis

• The atmospheric state at a given time and location is uncertain due to its dynamic and sparsely sampled nature

• Propagation effects for infrasonic signals must account for this uncertainty in order to properly quantify uncer-
tainty in analysis results

• A methodology of constructing propagation statistics has been developed that identifies a suite of atmospheric
states that characterize the possible space of scenarios, runs propagation simulations through each possible state,
and builds statistical distributions for propagation effects

Fig. 1: Stochastic propagation models are constructing using a suite of possible atmospheric states, propagation mod-
eling applied to each, and a statistical model describing the variability in the resulting set of predicted effects

• The tools included here provide a framework for constructing such models as well as perform a number of
analyses related to atmospheric variability and uncertainty

1.3. Stochastic Propagation Analysis 5

stochprop Documentation, Release 1.0

1.3.1 Empirical Orthogonal Function Analysis

• Empirical Orthogonal Functions (EOFs) provide a mathematical means of measuring variations in the atmo-
spheric state

• Methods measure EOF statistics to reduce the number of atmospheric samples necessary to characterize the
atmosphere at a given location during a specified time period

1.3.2 Atmospheric Fitting, Sampling, and Perturbation

• EOFs can be used to fit a specified atmosphere by computing coefficients for each EOF

• Statistics of the coefficients for a suite of atmospheric states can be used to generate a set of characteristics
samples

• Randomly generated EOF coefficients can be used to generate perturbations to an initial atmospheric specification
and construct a suite of atmospheric states that fall within expected uncertainty

1.3.3 Propagation Statistics

• InfraGA/GeoAc ray tracing analysis can be applied to a suite of atmospheric states to predict geometric propa-
gation characteristics such as arrival location, travel time, and direction of arrival needed to estimate the source
location

• NCPAprop modal simulations can be applied to a suite of atmospheric states to predict finite frequency trans-
mission loss needed to characterize the infrasonic source

1.3.4 Gravity Wave Perturbations

• Gravity wave perturbations are spatially and temporally sub-grid scale structures that aren’t typically captured in
atmospheric specifications

• The methods included here are based on the vertical ray tracing calculation discussed by Drob et al. (2013) and
also investigated by Lalande & Waxler (2016)

Empirical Orthogonal Function Analysis

– Empirical orthogonal functions (EOFs) are a mathematical tool useful for characterizing a suite
of vectors or functions via construction of basis vectors or functions.

– Consider 𝑁 fields, 𝑎𝑛(�⃗�), sampled at 𝑀 points, 𝑧𝑚 that define a matrix,

𝐴 (�⃗�) =

⎛⎜⎜⎜⎝
𝑎1 (𝑧1) 𝑎2 (𝑧1) · · · 𝑎𝑁 (𝑧1)
𝑎1 (𝑧2) 𝑎2 (𝑧2) · · · 𝑎𝑁 (𝑧2)

...
...

. . .
...

𝑎1 (𝑧𝑀) 𝑎2 (𝑧𝑀) · · · 𝑎𝑁 (𝑧𝑀)

⎞⎟⎟⎟⎠
– Analysis of this 𝑁 ×𝑀 matrix to compute EOFs entails first extracting the mean set of values

and then applying a singular value decomposition (SVD) to define singular values and orthogonal
functions,

𝐴 (�⃗�)
SVD−−→ �̄� (𝑧𝑚) ,𝒮(𝑎)𝑛 , ℰ(𝐴)

𝑛 (𝑧𝑚)

– The resulting EOF information can be used to reproduce any other other field sampled on the
same set of points,

6 Chapter 1. Contents

stochprop Documentation, Release 1.0

�̂� (𝑧𝑚) = �̄� (𝑧𝑚) +
∑︁
𝑛

𝒞(𝑏)𝑛 ℰ(𝐴)
𝑛 (𝑧𝑚),

𝒞(𝑏)𝑛 =
∑︁
𝑚

ℰ(𝐴)
𝑛 (𝑧𝑚) (𝑏 (𝑧𝑚)− �̄� (𝑧𝑚)),

– Note that the coefficients, 𝒞(𝑏)𝑛 , are defined by the projection of the new function onto each EOF
(accounting for the mean, �̄�)

– Consider a second matrix, 𝐵 (�⃗�) defined by a set of 𝐾 fields, 𝑏𝑘 (�⃗�). Each of these columns
produces a set of coefficients that can be used to define a distribution via a kernel density estimate
(KDE), {︁

𝒞(𝑏1)𝑛 , 𝒞(𝑏2)𝑛 , . . . , 𝒞(𝑏𝐾)
𝑛

}︁
KDE−−→ 𝒫(𝐵)

𝑛 (𝒞) .

– Comparison of the distributions for various matrices, 𝐵1, 𝐵2, 𝐵3, . . ., allows one to define the
relative similarity between differen sets by computing the overlap and weighting each term by
the EOF singular values,

Γ𝑗,𝑘 =
∑︁
𝑛

𝒮(all)
𝑛

∫︁
𝒫(𝐵𝑗)
𝑛 (𝒞)𝒫(𝐵𝑘)

𝑛 (𝒞) 𝑑𝒞

– In the case of EOF analysis for atmospheric seasonality and variability, each 𝑎𝑚(�⃗�) is an at-
mospheric specification sampled at a set of altitudes, �⃗�, and the set of atmospheric states in 𝐴
includes all possible states for the entire year (and potentially multiple years). The sets of atmo-
spheres in each matrix, 𝐵𝑗 , is a subset of 𝐴 corresponding to a specific month or other interval.
The coefficient overlap can be computed for all combinations to identify seasonality and deter-
mine the grouping of intervals for which propagation effects will be similar.

EOF methods in stochprop

– Empirical Orthogonal Function analysis methods can be accessed by importing stochprop.
eofs

– Although analysis can be completed using any set of user defined paths, it is recommended to
build a set of directories to hold the eof results, coefficient analyses, and samples produced from
seasonal analysis. It is often the case that the transitions from summer to winter and winter
to summer are overly similar and can be grouped together so that only 3 season definitions are
needed. This pre-analysis set up can be completed manually or by running:

import os
import subprocess
import numpy as np

from stochprop import eofs

if __name__ == '__main__':
eof_dirs = ["eofs", "coeffs", "samples"]
season_labels = ["winter", "spring", "summer"]

for dir in eof_dirs:
if not os.path.isdir(dir):

subprocess.call("mkdir " + dir, shell=True)

for season in season_labels:
(continues on next page)

1.3. Stochastic Propagation Analysis 7

stochprop Documentation, Release 1.0

(continued from previous page)

if not os.path.isdir("samples/" + season):
subprocess.call("mkdir samples/" + season,␣

→˓shell=True)

Load Atmosphere Specifications

– Atmospheric specifications are available through a number of repositories including the Ground-
to-Space (G2S) system, the European Centre for Medium-Range Weather Forecasts (ECMWF),
and other sources

– A convenient source for G2S specifications is the University of Mississippi’s National Center for
Physical Acoustics (NCPA) G2S server at http://g2s.ncpa.olemiss.edu

– The current implementation of EOF methods in stochprop assumes the ingested specifications are
formatted such that the columns contain altitude, temperature, zonal winds, meridional winds,
density, pressure (that is, zTuvdp in the infraGA/GeoAc profile options), which is the default
output format of the G2S server at NCPA. Note: a script is included in the infraGA/GeoAc
methods to extract profiles in this format from ECMWF netCDF files.

– The atmosphere matrix, 𝐴(�⃗�) can be constructed using stochprop.eofs.
build_atmo_matrix which accepts the path where specifications are located and a pattern to
identify which files to ingest.

∗ All specification in a directory can be ingested for analysis by simpy using,

A, z0 = eofs.build_atmo_matrix("profs/", "*.dat")

∗ Alternately, specific months, weeks of the year, years, or hours can be defined to limit
what information is included in the atmospheric matrix, 𝐴(�⃗�),

A, z0 = eofs.build_atmo_matrix("profs/", "*.dat", months=['10',
→˓'11', '12', '01', '02', '03'])
A, z0 = eofs.build_atmo_matrix("profs/", "*.dat", weeks=['01', '02
→˓'])
A, z0 = eofs.build_atmo_matrix("profs/", "*.dat", years=['2010'])
A, z0 = eofs.build_atmo_matrix("profs/", "*.dat", hours=['18'])

Computing EOFs

– Once the atmosphere matrix, 𝐴(�⃗�), has been ingested, EOF analysis can be completed using:

eofs.compute_eofs(A, z0, "eofs/examples")

– The analysis results are written into files with prefix specified in the function call
(“eofs/examples” in this case). The contents of the files are summarized is the below table.

8 Chapter 1. Contents

http://g2s.ncpa.olemiss.edu

stochprop Documentation, Release 1.0

EOF Output File Description
eofs/example-mean_atmo.dat Mean values, �̄� (�⃗�) in the above discussion
eofs/example-singular_values.dat Singular values corresponding each EOF index
eofs/example-adiabatic_snd_spd.eofs EOFs for the adiabatic sound speed, 𝑐ad =

√︁
𝛾 𝑝
𝜌

eofs/example-ideal_gas_snd_spd.eofs EOFs for the ideal gas sound speed, 𝑐ad =
√
𝛾𝑅𝑇

eofs/example-merid_winds.eofs EOFs for the meridional (north/south) winds
eofs/example-zonal_winds.eofs EOFs for the zonal (east/west) winds

– The EOF file formats is such that the first column contains the altitude points, �⃗�, and each sub-
sequent column contains the 𝑛𝑡ℎ EOF, ℰ(𝐴)

𝑛 (�⃗�)

– As discussed in Waxler et al. (2020), the EOFs are computed using stacked wind and sound
speed values to conserve coupling between the different atmospheric parameters and maintain
consistent units (velocity) in the EOF coefficients

– The resulting EOFs can be used for a number of analyses including atmospheric updating, sea-
sonal studies, perturbation analysis, and similar analyses

Fig. 2: Mean atmospheric states (left) and the first 10 EOFs for the adiabatic sound speed (upper row) and zonal and
meridional winds (lower row, blue and red, respectively) for analysis of the atmosphere in the northeastern US

Compute Coefficients and Determine Seasonality

– Using the EOFs for the entire calendar year, coefficient sets can be defined for individual months
(or other sub-intervals) using the stochprop.eofs.compute_coeffs function.

– For identification of seasonality by month, the coefficient sets are first computed for each indi-
vidual month using:

coeffs = [0] * 12
for m in range(12):

Am, zm = eofs.build_atmo_matrix("profs/", *.dat", months = ['%02d' % (m␣
→˓+ 1)])

(continues on next page)

1.3. Stochastic Propagation Analysis 9

stochprop Documentation, Release 1.0

(continued from previous page)

coeffs[m] = eofs.compute_coeffs(Am, zm, "eofs/" + run_id, "coeffs/" +␣
→˓run_id + "_{:02d}".format(m + 1), eof_cnt=eof_cnt)

– The resulting coefficient sets are analyzed using stochprop.eofs.compute_overlap to iden-
tify how similar various month pairs are:

overlap = eofs.compute_overlap(coeffs, eof_cnt=eof_cnt)
eofs.compute_seasonality("coeffs/example-overlap.npy", "eofs/example",
→˓"coeffs/example")

– The output of this analysis is a dendrogram identifying those months that are most similar. In the
below result, May - August is identified as a consistent “summer” season, October - March as
“winter”, and September and April as “spring/fall” transition between the two dominant seasons

Fig. 3: Clustering analysis on coefficient overlap is used to identify which months share common atmospheric structure

Command Line interface

– A command line interface (CLI) for the EOF methods is also included and can be utilized more
easily. Usage info for the EOF construction methods can be displayed by running stochprop
eof-construct --help:

Usage: stochprop eof-construct [OPTIONS]

Use a SVD to construct Empirical Orthogonal Functions (EOFs) from␣
→˓a suite of atmospheric specifications

Example Usage:
stochprop eof-construct --atmo-dir profs/ --eofs-path␣

→˓eofs/example
stochprop eof-construct --atmo-dir profs/ --eofs-path␣

→˓eofs/example_winter --month-selection '[10, 11, 12, 01, 02, 03]'
(continues on next page)

10 Chapter 1. Contents

stochprop Documentation, Release 1.0

(continued from previous page)

Options:
--atmo-dir TEXT Directory of atmspheric specifications␣

→˓(required)
--eofs-path TEXT EOF output path and prefix (required)
--atmo-pattern TEXT Specification file pattern (default:

→˓'*.met')
--atmo-format TEXT Specification format (default: 'zTuvdp

→˓')
--month-selection TEXT Limit analysis to specific month(s)␣

→˓(default=None)
--week-selection TEXT Limit analysis to specific week(s)␣

→˓(default=None)
--year-selection TEXT Limit analysis to specific year(s)␣

→˓(default=None)
--save-datetime BOOLEAN Save date time info (default: False)
--eof-cnt INTEGER Number of EOFs to store (default: 100)
-h, --help Show this message and exit.

Atmospheric Fitting, Sampling, and Perturbation

– The Empirical Orthogonal Functions (EOFs) constructed using a suite of atmospheric specifica-
tions can be utilized in a number of different analyses of the atmospheric state

– In general, an atmospheric state can be constructed by defining a reference atmosphere, 𝑏0 (𝑧𝑚),
and a set of coefficients, 𝒞𝑛,

�̂� (𝑧𝑚) = 𝑏0 (𝑧𝑚) +
∑︁
𝑛

𝒞𝑛ℰ𝑛 (𝑧𝑚),

Fitting an Atmospheric Specification using EOFs

– In the case that a specific state, 𝑏 (𝑧𝑚), is known, it can be approximated using the EOF set by
using the mean state pulled from the original SVD analysis and coefficients defined by projecting
the atmospheric state difference from this mean onto each EOF,

𝑏0 (𝑧𝑚) = �̄� (𝑧𝑚) , 𝒞(𝑏)𝑛 =
∑︁
𝑚

ℰ𝑛 (𝑧𝑚) (𝑏 (𝑧𝑚)− �̄� (𝑧𝑚)),

– These coefficient calculations and construction of a new atmospheric specification can be com-
pleted using stochprop.eofs.fit_atmo with the path to specific atmospheric state, a set of
EOFs, and a specified number of coefficients to compute,

prof_path = "profs/01/g2stxt_2010010100_39.7393_-104.9900.dat"
eofs_path = "eofs/example"

eofs.fit_atmo(prof_path, eofs_path, "eof_fit-N=30.met", eof_cnt=30)

– This analysis is useful to determine how many coefficients are needed to accurately reproduce an
atmospheric state from a set of EOFs. Such an analysis is shown below for varying number of
coefficients and convergence is found at 50 - 60 terms.

1.3. Stochastic Propagation Analysis 11

stochprop Documentation, Release 1.0

Fig. 4: Accuracy of fitting a specific atmospheric state (black) using varying numbers of EOF coefficients (red) shows
convergence for approximately 50 - 60 terms in the summation

Sampling Specifications using EOF Coefficient Distributions

– Samples can be generated that are representative of a given coefficient distributions as constructed
using stochprop.eofs.compute_coeffs or a combination of them.

– In such a case, the reference atmosphere is again the mean state from the SVD analysis and the
coefficients are randomly generated from the distributions defined by kernel density estimates
(KDE’s) of the coefficient results

𝑏
(𝐵)
0 (𝑧𝑚) = �̄� (𝑧𝑚) , 𝒞𝑛 ←− 𝒫(𝐵)

𝑛 (𝒞)

– In addition to sampling the coefficient distributions, the maximum likelihood atmospheric state
can be defined by defining each coefficient to be the maximum of the distribution,

𝑏
(𝐵)
0 (𝑧𝑚) = �̄� (𝑧𝑚) , 𝒞𝑛 = argmax

[︁
𝒫(𝐵)
𝑛 (𝒞)

]︁
– This sampling and maximum likelihood calculation can be run by loading coefficient results and

running,

coeffs = np.load("coeffs/example_05-coeffs.npy")
coeffs = np.vstack((coeffs, np.load("coeffs/example_06-coeffs.npy")))
coeffs = np.vstack((coeffs, np.load("coeffs/example_07-coeffs.npy")))
coeffs = np.vstack((coeffs, np.load("coeffs/example_08-coeffs.npy")))

eofs.sample_atmo(coeffs, eofs_path, "samples/summer/example-summer", prof_
→˓cnt=25)
eofs.maximum_likelihood_profile(coeffs, eofs_path, "samples/example-summer")

– This analysis can be completed for each identified season to generate a suite of atmospheric
specifications representative of the season as shown in the figure below. This can often provide
a significant amount of data reduction for propagation studies as multiple years of specifications
(numbering in the 100’s or 1,000’s) can be used to construct a representative set of 10’s of atmo-
spheres that characterize the time period of interest as in the figure below.

12 Chapter 1. Contents

stochprop Documentation, Release 1.0

Fig. 5: Samples for seasonal trends in the western US show the change in directionality of the stratospheric waveguide
in summer and winter

1.3. Stochastic Propagation Analysis 13

stochprop Documentation, Release 1.0

Perturbing Specifications to Account for Uncertainty

– In most infrasonic analysis, propagation analysis through a specification for the approximate time
and location of an event doesn’t produce the exact arrivals observed due to the dynamic and
sparsely sampled nature of the atmosphere

– Because of this, it is useful to apply random perturbations to the estimated atmospheric state
covering some confidence level and consider propagation through the entire suite of “possible”
states

– In such a case, the reference atmosphere, 𝑐0 (𝑧𝑚) defines the initial states, coefficients are ran-
domly generated from a normal distribution, and weighting is applied based on the singular values
and mean altitudes of the EOFs,

𝑏0 (𝑧𝑚) = 𝑐0 (𝑧𝑚) , 𝒞𝑛 ←− 𝒩 (0, 𝜎*) , 𝑤𝑛 = 𝒮𝛾𝑛 𝑧𝜂𝑛

– The set of perturbations is scaled to match the specified standard deviation after summing over
coefficients and averaged over the entire set of altitudes

– Unlike the above methods, in this analysis a weighting is defined by the singular value of the
associated EOF and the mean altitude of the EOF, 𝑧𝑛 =

∑︀
𝑚 𝑧𝑚ℰ𝑛 (𝑧𝑚) in order to avoid rapidly

oscillating EOFs from contributing too much noise and to focus perturbations at higher altitudes
where uncertainties are larger, respectively. The exponential coefficients have default values of
𝛾 = 0.25 and 𝜂 = 2, but can be modified in the function call.

– This perturbation analysis can be completed using stochprop.eofs.perturb_atmo with a
specified starting atmosphere, set of EOFs, output path, uncertainty measure in meters-per-
second, and number of samples needed,

eofs.perturb_atmo(prof_path, eofs_path, "eof_perturb", uncertainty=5.0,␣
→˓sample_cnt=10)

– The below figure shows a sampling of results using uncertainties of 5.0, 10.0, and 15.0 meters-
per-second. The black curve is input as the estimated atmospheric state and the red curves are
generated by the perturbations.

Command Line interface

– Command line methods are included to access the perturbation methods more efficiently. Usage
info for the EOF perturbation methods can be displayed by running stochprop eof-perturb
--help:

Usage: stochprop eof-perturb [OPTIONS]

Use a set of EOFs to perturb a reference atmospheric␣
→˓specification with a defined standard deviation.

Example Usage:
stochprop eof-perturb --atmo-file profs/g2stxt_2010010118_

→˓39.7393_-104.9900.dat --eofs-path eofs/example --out test

Options:
--atmo-file TEXT Reference atmspheric␣

→˓specification (required)
--eofs-path TEXT EOF output path and prefix␣

→˓(required)
(continues on next page)

14 Chapter 1. Contents

stochprop Documentation, Release 1.0

Fig. 6: Perturbations to a reference atmospheric state can be computed using randomly generated coefficients for a suite
of EOFs with specified standard deviation

1.3. Stochastic Propagation Analysis 15

stochprop Documentation, Release 1.0

(continued from previous page)

--out TEXT Output prefix (required)
--std-dev Float Standard deviation (default: 10␣

→˓m/s)
--eof-max INTEGER Maximum EOF coefficient to use␣

→˓(default: 100)
--eof-cnt INTEGER Number of EOFs to use (default:␣

→˓50)
--sample-cnt INTEGER Number of perturbed samples␣

→˓(default: 25)
--alt-weight FLOAT Altitude weighting power␣

→˓(default: 2.0)
--singular-value-weight FLOAT Sing. value weighting power␣

→˓(default: 0.25)
-h, --help Show this message and exit.

Propagation Statistics

– Propagation statistics for path geometry (e.g., arrival location, travel time, direction of arrival)
and transmission loss can be computed for use in improving localization and yield estimation
analyses, respectively.

– In the case of localization, a general celerity (horizontal group velocity) model is available in
InfraPy constructed as a three-component Gaussian-mixture-model (GMM). This model contains
peaks corresponding to the tropospheric, stratospheric, and thermospheric waveguides and has
been defined by fitting the parameterized GMM to a kernel density estimate of a full year of ray
tracing analyses.

Fig. 7: A general travel time model includes three components corresponding to the tropospheric, stratospheric, and
thermospheric waveguides.

– More specific models can be constructed from a limite suite of atmospheric states describing a
location and seasonal trend (e.g., winter in the western US) or using an atmospheric state for a
specific event with some perturbation analysis. In either case, propagation simulations are run
using the suite of atmospheric states and a statistical model is defined using the outputs to quantify
the probability of a given arrival characteristic.

16 Chapter 1. Contents

stochprop Documentation, Release 1.0

Fig. 8: Stochastic propagation models are constructing using a suite of possible atmospheric states, propagation mod-
eling applied to each, and a statistical model describing the variability in the resulting set of predicted effects

1.3. Stochastic Propagation Analysis 17

stochprop Documentation, Release 1.0

Path Geometry Models (PGMs)

– Path geometry models describing the arrival location, travel time, direction of arrival (back az-
imuth, inclination angle) can be computed using geometric modeling simulations such as those
in the InfraGA/GeoAc package.

– Ray tracing simulations can be run for all atmospheric specification files in a given directory
using the stochprop.propagation.run_infraga method by specifying the directory, output
file, geometry (3D Cartesian or spherical), CPU count (if the infraGA/GeoAc OpenMPI methods
are installed), azimuth and inclination angle ranges, and source location

∗ Note: the source location is primarily used in the spherical coordinate option to specify
the latitude and longitude of the source, but should also contain the ground elevation for
the simulation runs as the third element (e.g., for a source at 30 degrees latitude, 100 de-
grees longitude, and a ground elevation of 1 km, specify src_loc=(0.0, 0.0, 1.0)
or src_loc=(30.0, 100.0, 1.0) for the geom="3d" or geom="sph" options, respec-
tively).

from stochprop import propagation

propagation.run_infraga("samples/winter/example-winter", "prop/winter/
→˓example-winter.arrivals.dat", cpu_cnt=12, geom="sph", inclinations=[5.0,␣
→˓45.0, 1.5], azimuths=azimuths, src_loc=src_loc)

– The resulting infraGA/GeoAc arrival files are concatenated into a single arrivals file and can
be ingested to build a path geometry model by once again specifying the geometry and source
location.

pgm = propagation.PathGeometryModel()
pgm.build("prop/winter/example-winter.arrivals.dat", "prop/winter/example-
→˓winter.pgm", geom="sph", src_loc=src_loc)

– The path geometry model can later be loaded into a stochprop.propagation.
PathGeometryModel instance and visualized to investigate the propagation statistics.

pgm.load("prop/winter/example-winter.pgm")
pgm.display(file_id="prop/winter/example-winter", subtitle="winter")

– The path geometry models constructed here can be utilized in the InfraPy Bayesian Infrasonic
Source Localization (BISL) analysis by specifying them as the path_geo_model for that anal-
ysis.

from infrapy.location import bisl

det_list = lklhds.json_to_detection_list('data/detection_set2.json')
result, pdf = bisl.run(det_list, path_geo_model=pgm)

18 Chapter 1. Contents

stochprop Documentation, Release 1.0

Fig. 9: Stochastic propagation-based path geometry model examples for a winter shows the expected stratospheric
waveguide for propagation to the east and azimuth deviations to the north and south due to the strong stratospheric
cross winds.

Transmission Loss Models (TLMs)

– Analysis of source characteristics includes estimation of the power of the acoustic signal at some
reference distance from the (typically) complex source mechanism

– Such analysis using regional signals requires a propagation model that relates the energy losses
along the path, termed the transmission loss and in the case of infrasonic analysis, several methods
are available in the NCPAprop software suite from the University of Mississippi

– The NCPAprop modal analysis using the effective sound speed, modess, can be accessed from
stochprop.propagation.run_modess to compute transmission loss predictions for all atmo-
spheric specifications in a directory in a similar fashion to the methods above for infraGA/GeoAc.

from stochprop import propagation

f_min, f_max, f_cnt = 0.01, 1.0, 10
f_vals = np.logspace(np.log10(f_min), np.log10(f_max), f_cnt)

for fn in f_vals:
propagation.run_modess("samples/winter/example-winter", "prop/winter/

→˓example-winter", azimuths=azimuths, freq=fn, clean_up=True, cpu_cnt=cpu_
→˓cnt)

– Each run of this method produces a pair of output files, prop/winter/example-winter_0.
100Hz.nm and prop/winter/example-winter_0.100Hz.lossless.nm that contain the pre-
dicted transmission loss with and without thermo-viscous absorption losses.

– The transmission loss predictions are loaded in frequency by frequency and statistics for trans-
mission as a function of propagation range and azimuth are constructed and written into specified
files,

for fn in f_vals:
tlm = propagation.TLossModel()

(continues on next page)

1.3. Stochastic Propagation Analysis 19

stochprop Documentation, Release 1.0

(continued from previous page)

tlm.build("prop/winter/example-winter" + "_%.3f" %fn + ".nm", "prop/
→˓winter/example-winter" + "_%.3f" %fn + ".tlm")

– The transmission loss model can later be loaded into a stochprop.propagation.TLossModel
instance and visualized to investigate the propagation statistics similarly to the path geometry
models.

tlm.load("prop/winter/example-winter_0.359Hz.tlm")
tlm.display(file_id=("prop/winter/example-winter_0.359Hz), title=(
→˓"Transmission Loss Statistics" + '\n' + "winter, 0.359 Hz"))

Fig. 10: Transmission loss statistics used for source characterization can be constructed using analysis of NCPAprop
normal mode algorithm output.

– The transmission loss models constructed in stochprop can be utilized in the InfraPy Spectral
Yield Estimation (SpYE) algorithm by specifying a set of models and their associated frequencies
(see InfraPy example for detection and waveform data setup),

from infrapy.characterization import spye

Define detection list, signal-minus-signal spectra,
source location, and analysis frequency band

tlms = [0] * 2
tlms[0] = list(f_vals)
tlms[1] = [0] * f_cnt

(continues on next page)

20 Chapter 1. Contents

stochprop Documentation, Release 1.0

(continued from previous page)

for n in range(f_cnt):
tlms[1][n] = propagation.TLossModel()
tlms[1][n].load("prop/winter/example-winter_" + "%.3f" % models[0][n] +

→˓"Hz.tlm")

yld_vals, yld_pdf, conf_bnds = spye.run(det_list, smn_specs, src_loc, freq_
→˓band, tlms)

Gravity Wave Perturbations

– Atmospheric specifications available for a given location and time (e.g., G2S) are averaged over
some spatial and temporal scale so that sub-grid scale fluctuations must be estimated stochas-
tically and applied in order to construct a suite of possible atmospheric states. The dominant
source of such sub-grid fluctuations in the atmosphere is that of bouyancy or gravity waves.

– Stochastic gravity wave perturbation methods are included in stochprop using an approach
based on the vertical ray tracing approach detailed in Drob et al. (2013) and are summarized
below for reference.

Freely Propagation and Trapped Gravity Waves

– Gravity wave dynamics are governed by a pair relations describing the disperion and wave action
conservation. The dispersion relation describing the vertical wavenumber, 𝑚, can be expressed
as,

𝑚2 (𝑘, 𝑙, 𝜔, 𝑧) =
𝑘2ℎ
�̂�2

(︀
𝑁2 − �̂�2

)︀
+

1

4𝐻2

– In this relation 𝑘 and 𝑙 are the zonal and meridional wave numbers, 𝑘2ℎ =
√
𝑘2 + 𝑙2 is the com-

bined horizontal wavenumber, 𝐻 = −𝜌0 ×
(︁

𝜕𝜌0

𝜕𝑧

)︁−1

is the density scale height, 𝜌0 (𝑧) is the

ambient atmospheric density, 𝑁 =
√︁
− 𝑔

𝜌0

𝜕𝜌0

𝜕𝑧 =
√︀

𝑔
𝐻 is the atmospheric bouyancy frequency,

and �̂� is the intrinsic angular frequency (relative to the moving air) that is defined from to the
absolute angular frequency (relative to the ground), 𝜔, horizontal wavenumbers, and winds,

�̂� (𝑘, 𝑙, 𝜔, 𝑧) = 𝜔 − 𝑘𝑢0 (𝑧)− 𝑙𝑣0 (𝑧)

– This dispersion relation can be solved for �̂� and used to define the vertical group velocity,

�̂� =
𝑘ℎ𝑁 (𝑧)√︁

𝑘2ℎ + 𝑚2 (𝑧) + 1
4𝐻2(𝑧)

→ 𝑐𝑔,𝑧 (𝑘, 𝑙, 𝜔, 𝑧) =
𝜕�̂�

𝜕𝑚
= − 𝑚𝑘ℎ𝑁(︀

𝑘2ℎ + 𝑚2 + 1
4𝐻2

)︀ 3
2

– The conservation of wave action leads to a condition on the vertical velocity perturbation spec-
trum that can be used to define a freely propagating solution,

𝜌0𝑚 |�̂�|2 = constant → �̂� (𝑘, 𝑙, 𝜔, 𝑧) = �̂�0𝑒
𝑖𝜙0

√︃
𝜌0 (𝑧0)

𝜌0 (𝑧)

𝑚 (𝑧0)

𝑚 (𝑧)
𝑒
𝑖
∫︀ 𝑧
𝑧0

𝑚(𝑧′)𝑑𝑧′

– The above relation is valid in the case that 𝑚 (𝑘, 𝑙, 𝜔, 𝑧) remains real through the integration
upward in the exponential. In the case that an altitude exists for which the vertical wavenum-
ber becomes imaginary, the gravity wave energy reflects from this turning height and the above
relation is not valid. Instead, the solution is expressed in the form,

1.3. Stochastic Propagation Analysis 21

stochprop Documentation, Release 1.0

�̂� (𝑘, 𝑙, 𝜔, 𝑧) = 2𝑖
√
𝜋�̂�0

√︃
𝜌0 (𝑧0)

𝜌0 (𝑧)

𝑚 (𝑧0)

𝑚 (𝑧)
× (−𝑟)

1
4 Ai (𝑟) 𝑒−𝑖𝜋

4 𝑆𝑛

∗ The Airy function argument in the above is defined uniquely above and below the
turning height 𝑧𝑡,

𝑟 =

⎧⎨⎩−
(︀
3
2

∫︀ 𝑧𝑡
𝑧
|𝑚 (𝑧′)| 𝑑𝑧′

)︀ 2
3 𝑧 < 𝑧𝑡(︁

3
2

∫︀ 𝑧

𝑧𝑡
|𝑚 (𝑧′)| 𝑑𝑧′

)︁ 2
3

𝑧 > 𝑧𝑡

∗ The reflection phase factor, 𝑆𝑛, accounts for the caustic phase shifts from the 𝑛 re-
flections from the turning height,

𝑆𝑛 =

𝑛∑︁
𝑗=1

𝑒𝑖(𝑗−1)(2Φ−𝜋
2), Φ =

∫︁ 𝑧𝑡

0

𝑚 (𝑧′) 𝑑𝑧′

– The vertical velocity spectra defined here can be related to the horizontal velocity for the freely
propagating and trapped scenarios through derivatives of the vertical velocity spectrum,

�̂�(free) = −𝑘𝑚

𝑘2ℎ
�̂�, �̂�(trapped) =

2𝑖�̂�0√
𝜋

𝑘

𝑘2ℎ

√︃
𝜌0 (𝑧0)

𝜌0 (𝑧)

𝑚 (𝑧0)

𝑚 (𝑧)
× (−𝑟)

1
4 Ai′ (𝑟) 𝑒−𝑖𝜋

4 𝑆𝑛

𝑣(free) = − 𝑙𝑚

𝑘2ℎ
�̂�, 𝑣(trapped) =

2𝑖�̂�0√
𝜋

𝑙

𝑘2ℎ

√︃
𝜌0 (𝑧0)

𝜌0 (𝑧)

𝑚 (𝑧0)

𝑚 (𝑧)
× (−𝑟)

1
4 Ai′ (𝑟) 𝑒−𝑖𝜋

4 𝑆𝑛

– Finally, once computed for the entire atmosphere, the spatial and temporal domain forms can be
computed by an inverse Fourier transform,

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) =

∫︁
𝑒−𝑖𝜔𝑡

(︂∫︁∫︁
�̂� (𝑘, 𝑙, 𝜔, 𝑧) 𝑒𝑖(𝑘𝑥+𝑙𝑦)𝑑𝑘 𝑑𝑙

)︂
𝑑𝜔

Damping, Source and Saturation Spectra, and Critical Layers

– At altitudes above about 100 km, gravity wave damping by molecular viscosity and thermal diffu-
sion becomes increasingly important. Following the methods developed by Drob et al. (2013), for
altitudes above 100 km, an imaginary vertical wave number term can be defined, 𝑚→ 𝑚+𝑚𝑖,
where,

𝑚𝑖 (𝑘, 𝑙, 𝜔, 𝑧) = −𝜈𝑚
3

�̂�
, 𝜈 = 3.563× 10−7𝑇

0.69
0

𝜌0

∗ This produces a damping factor for the freely propagating solution that is integrated
upward along with the phase,

�̂� (𝑘, 𝑙, 𝜔, 𝑧) = �̂�0𝑒
𝑖𝜙0

√︃
𝜌0 (𝑧0)

𝜌0 (𝑧)

𝑚 (𝑧0)

𝑚 (𝑧)
𝑒
𝑖
∫︀ 𝑧
𝑧0

𝑚(𝑧′)𝑑𝑧′
𝑒
−

∫︀ 𝑧
𝑧0

𝑚𝑖(𝑧′)𝑑𝑧′

∗ In the trapped solution, the reflection phase shift includes losses for each pass up to
the turning height and back,

𝑆𝑛 = 𝑒−2𝑛Ψ
𝑛∑︁

𝑗=1

𝑒𝑖(𝑗−1)(2Φ−𝜋
2), Φ =

∫︁ 𝑧𝑡

0

𝑚 (𝑧′) 𝑑𝑧′, Ψ =

∫︁ 𝑧𝑡

0

𝑚𝑖 (𝑧′) 𝑑𝑧′,

22 Chapter 1. Contents

stochprop Documentation, Release 1.0

∗ Note that if 𝑧𝑡 is below 100 km there is no loss calculated and when it is above this
altitude the losses are only computed from 100 km up to the turning height.

– The source spectra defined by Warner & McIntyre (1996) specifies the wave energy density for
a source at 20 km altitude (note: �̂� exponential corrected in publication errata),

ℰsrc (𝑚, �̂�) = 1.35× 10−2 𝑚

𝑚4
* + 𝑚4

𝑁2

�̂�
5
3

Ω, Ω =
�̂�

2
3

min

1−
(︀
�̂�min
𝑁

)︀ 2
3

, 𝑚* =
2𝜋

2.5km

∗ The wave energy density can be expressed in terms of spectral coordiantes using
ℰ (𝑘, 𝑙, 𝜔) = ℰ (𝑚, �̂�) 𝑚

𝑘2
ℎ

which can then be related to the vertical velocity spectrum
producing the initial condition for starting the calculation,

ℰ (𝑘, 𝑙, 𝜔) =
1

2

𝑁2

�̂�2
|�̂�0|2 → |�̂�0|2 = 2.7× 10−2 𝑚2

𝑚4
* + 𝑚4

�̂�
1
3

𝑘2ℎ
Ω.

– Gravity wave breaking in the atmosphere is included in analysis via a saturation limit following
work by Warner & McIntyre (1996) where the spectral coordinate saturation spectrum is (note:
the exponential for �̂� is again corrected in publication errata),

ℰsat (𝑘, 𝑙, 𝜔) = 1.35× 10−2 𝑁2

�̂�
5
3𝑚3

∗ Again using the relation between wave energy density and vertical velocity spectrum,
this produces,

|�̂�sat|2 = 2.7× 10−2 �̂�
1
3

𝑚2𝑘2ℎ
.

– Lastly, from the above definition for the vertical group velocity, 𝑐𝑔,𝑧 , it is possible to have altitudes
for which �̂� → 0 and 𝑐𝑔,𝑧 similarly goes to zero. In such a location the wave energy density
becomes infinite; however, the propagation time to such an altitude is infinite and it is therefore
considered a “critical layer” because the ray path will never reach the layer. In computing gravity
wave spectra using the methods here, a finite propagation time of several hours is defined and
used to prevent inclusion of the critical layer effects and also quantify the number of reflections
for trapped components. Drob et al. included a damping factor for altitudes with propagation
times more than 3 hours and that attenuation is included here as well.

Gravity Wave implementation in stochprop

– The implementation of the gravity wave analysis partially follows that summarized by Drob et
al. (2013) and is sumamrized here

∗ Atmospheric information is constructed from a provided atmospheric specification:

1. Interpolations of the ambient horizontal winds, 𝑢0 (𝑧) and 𝑣0 (𝑧), density, 𝜌0 (𝑧), and
temperature, 𝑇0 (𝑧) are defined.

2. The density scale height, 𝐻 (𝑧), is computed using finite differences of the ambient den-
sity.

3. Atmospheric fields are re-sampled on a higher resolution set of altitudes with 𝑑𝑧 = 200
meters.

∗ A grid of 𝑘, 𝑙, and 𝜔 values are defined:

1.3. Stochastic Propagation Analysis 23

stochprop Documentation, Release 1.0

1. The horizontal resolution, 𝑑𝑥, is set to 4 meters following Drob et al. (2013) with 𝑁𝑘 =
128 (both of these quantities can be modified by the user, but default to the values from
Drob et al.)

2. Five frequency values are defined for analysis covering a frequency band from 𝜔min =
2𝑓Cor to 𝜔max = 𝑁max√

5
where 𝑓Cor is the Coriolis frequency, 𝑓Cor = 7.292 × 10−5 rad

s ×
sin (𝜃) , where 𝜃 is the latitude at which the atmosphere sample was calculated.

3. Because sampling is done over intrinsic frequency, a phase shift is introduced in the
Fourier transform needed to invert the solution,

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) =

∫︁
𝑒𝑖�̂�𝑡

(︂∫︁∫︁
�̂� (𝑘, 𝑙, �̂�, 𝑧) 𝑒𝑖(𝑘𝑢0+𝑙𝑣0)𝑒𝑖(𝑘𝑥+𝑙𝑦)𝑑𝑘 𝑑𝑙

)︂
𝑑�̂�

∗ For each Fourier component combination, 𝑘, 𝑙, 𝜔, several checks are made and pre-analysis
completed:

1. Those Fourier components for which 𝑘ℎ > 𝑘max are masked out of the calculation as well
as those for which 𝐶 = 𝑁

𝑚 > 90 m
s and those for which 𝑐𝑔,𝑧 (𝑧src) < 0.5 m

s .

2. Turning heights at which𝑚2 (𝑧𝑡)→ 0 are identified and for each such Fourier combination
the propagation time, phase shift, and attenuation factors are computed.

∗ The relations above for �̂� (𝑘, 𝑙, 𝜔, 𝑧) are used to define the solution below the source height
and to integrate the solution from the source height to the upper limit of the atmosphere using
either the free or trapped form depending on whether a turning point exists

1. At each altitude, the propagation time to that point is computed and compared with a
user specified propagation time that defaults to 8 hours to determine whether energy has
reached that altitude.

2. Similary, the number of reflections used in computing the trapped solution phase shift if
determined by the ratio of the propagation time of the trapped solution with the specified
time.

3. Unlike the Drob et al. (2013) implementation where the Fourier components are integrated
upward together, the implementation in stochprop compute each Fourier component in-
dependently and use available multiprocessing tools to run the calculations in parallel.
For 𝑁𝑘 = 128 and 𝑑𝑥 = 4, the gravity wave perturbations can be computed using 10
CPUs in approximatley 20 - 30 minutes.

∗ The gravity wave field in the spatial and time domain are obtained by inverting the spatial
components using numpy.fft.ifft on the appropriate axes and the 𝜔 integration is sim-
plified by setting 𝑡 = 0 in the solution which reduces the time/frequency domain inversion
to a simple integration,

𝑤 (𝑥, 𝑦, 𝑧, 0) =

∫︁∫︁ (︂∫︁
�̂� (𝑘, 𝑙, �̂�, 𝑧) 𝑑�̂�

)︂
𝑒−𝑖(𝑘𝑢0+𝑙𝑣0)𝑒𝑖(𝑘𝑥+𝑙𝑦)𝑑𝑘 𝑑𝑙

– Use of the methods is summarized in the below example:

from stochprop import gravity_waves

if __name__ == '__main__':
atmo_spec = "profs/01/g2stxt_2010010100_39.7393_-104.9900.dat"
output_path = "gw_perturb"

t0 = 6.0 * 3600.0
(continues on next page)

24 Chapter 1. Contents

stochprop Documentation, Release 1.0

(continued from previous page)

Run gravity wave calculation
gravity_waves.perturb_atmo(atmo_spec, output_path, t0=t0, cpu_

→˓cnt=10)

– A command line interface (CLI) method is also included and can be utilized more easily. General
usage info can be displayed by running stochprop gravity-waves --help:

Usage: stochprop gravity-waves [OPTIONS]

Gravity wave perturbation calculation based on Drob et al. (2013)␣
→˓method.

Example Usage:
stochprop gravity-waves --atmo-file profs/g2stxt_2010010118_39.
→˓7393_-104.9900.dat --out test_gw

Options:
--atmo-file TEXT Reference atmspheric specification␣

→˓(required)
--out TEXT Output prefix (required)
--sample-cnt INTEGER Number of perturbated samples (default:␣

→˓25)
--t0 FLOAT Propagation time from source [hr]␣

→˓(default: 8)
--dx FLOAT Horizontal wavenumber scale [km]␣

→˓(default: 4.0)
--dz FLOAT Altitude resolution [km] (default: 0.2)
--nk INTEGER Horizontal wavenumber resolution␣

→˓(default: 128)
--nom INTEGER Frequency resolution (default: 5)
--random-phase BOOLEAN Randomize phase at source [bool]␣

→˓(default: False)
--z-src FLOAT Gravity wave source altitude [km]␣

→˓(default: 20.0)
--m-star FLOAT Gravity wave source spectrum peak [1/

→˓km] (default: (2 pi) / 2.5)
--cpu-cnt INTEGER Number of CPUs to use in parallel␣

→˓analysis (default: None)
-h, --help Show this message and exit.

– An example CLI usage is:

stochprop gravity-waves --atmo-file profs/01/g2stxt_2010010100_39.7393_-104.
→˓9900.dat --out gw_perturb --cpu-cnt 10

– An example set of perturbations is shown below.

– Note: Although perturbations to the ambient temperature are included in the Drob et al. (2013)
discussion, they are not included here and modifications to the 𝑁𝑘, 𝑑𝑥, and 𝑁𝜔 values often
cause issues with the calculation of gravity waves. Work is ongoing to debug and improve the
efficiency of the methods here and will be added in a future update of stochprop.

1.3. Stochastic Propagation Analysis 25

stochprop Documentation, Release 1.0

1.4 API

1.4.1 Empirical Orthogonal Function Analysis

stochprop.eofs.build_atmo_matrix(path, pattern='*.dat', years=None, months=None, weeks=None,
hours=None, skiprows=0, ref_alts=None, prof_format='zTuvdp',
latlon0=None, return_datetime=False)

Read in a list of atmosphere files from the path location matching a specified pattern for continued analysis.

Parameters
path: string Path to the profiles to be loaded

pattern: string Pattern defining the list of profiles in the path

skiprows: int Number of header rows in the profiles

ref_alts: 1darray Reference altitudes if comparison is needed

prof_format: string Profile format is either ‘ECMWF’ or column specifications (e.g., ‘zTu-
vdp’)

return_datetime: bool Option to return the datetime info of ingested atmosphere files for future
reference

Returns
A: 2darray Atmosphere array of size M x (5 * N) for M atmospheres where each atmosphere

samples N altitudes

z: 1darray Altitude reference values [km]

26 Chapter 1. Contents

stochprop Documentation, Release 1.0

datetime: 1darray List of dates and times for each specification in the matrix (optional output,
see Parameters)

stochprop.eofs.build_cdf(pdf, lims, pnts=250)
Compute the cumulative distribution of a pdf within specified limits

Parameters
pdf: function Probability distribution function (PDF) for a single variable

lims: 1darray Iterable containing lower and upper bound for integration

pnts: int Number of points to consider in defining the cumulative distribution

Returns
cfd: interp1d Interpolated results for the cdf

stochprop.eofs.compute_coeffs(A, alts, eofs_path, output_path, eof_cnt=100, pool=None)
Compute the EOF coefficients for a suite of atmospheres and store the coefficient values.

Parameters
A: 2darray Suite of atmosphere specifications from build_atmo_matrix

alts: 1darray Altitudes at which the atmosphere is sampled from build_atmo_matrix

eofs_path: string Path to the .eof results from compute_eofs

output_path: string Path where output will be stored

eof_cnt: int Number of EOFs to consider in computing coefficients

pool: pathos.multiprocessing.ProcessingPool Multiprocessing pool for accelerating calcula-
tions

Returns
coeffs: 2darray Array containing coefficient values of size prof_cnt by eof_cnt. Result is also

written to file.

stochprop.eofs.compute_eofs(A, alts, output_path, eof_cnt=100)
Computes the singular value decomposition (SVD) of an atmosphere set read into an array by stoch-
prop.eofs.build_atmo_matrix() and saves the basis functions (empirical orthogonal functions) and singular values
to file

Parameters
A: 2darray Suite of atmosphere specifications from build_atmo_matrix

alts: 1darray Altitudes at which the atmosphere is sampled from build_atmo_matrix

output_path: string Path to output the SVD results

eof_cnt: int Number of basic functions to save

stochprop.eofs.compute_overlap(coeffs, eofs_path, eof_cnt=100, method='mean')
Compute the overlap of EOF coefficient distributions

Parameters
coeffs: list of 2darrays

List of 2darrays containing coefficients to consider overlap in PDF of values

eofs_path: string Path to the .eof results from compute_eofs

eof_cnt: int Number of EOFs to compute

1.4. API 27

stochprop Documentation, Release 1.0

method [string] Option to decide which overlap to use (“kde” or “mean”)

Returns
overlap: 3darray Array containing overlap values of size coeff_cnt by coeff_cnt by eof_cnt

stochprop.eofs.compute_seasonality(overlap_file, file_id=None)
Compute the overlap of EOF coefficients to identify seasonality

Parameters
overlap_file: string Path and name of file containing results of stochprop.eofs.compute_overlap

file_id: string Path and ID to save the dendrogram result of the overlap analysis

stochprop.eofs.define_coeff_limits(coeff_vals)
Compute upper and lower bounds for coefficient values

Parameters
coeff_vals: 2darrays Coefficients computed with stochprop.eofs.compute_coeffs

Returns
lims: 1darray Lower and upper bounds of coefficient value distribution

stochprop.eofs.density(z)
Computes the atmospheric density according to the US standard atmosphere model using a polynomial fit

Parameters
z: float Altitude above sea level [km]

Returns
density: float Density of the atmosphere at altitude z [g/cm^3]

stochprop.eofs.draw_from_pdf(pdf, lims, cdf=None, size=1)
Sample a number of values from a probability distribution function (pdf) with specified limits

Parameters
pdf: function Probability distribution function (PDF) for a single variable

lims: 1darray Iterable containing lower and upper bound for integration

cdf: function Cumulative distribution function (CDF) from stochprop.eofs.build_cfd

size: int Number of samples to generate

Returns
samples: 1darray Sampled values from the PDF

stochprop.eofs.fit_atmo(prof_path, eofs_path, output_path, eof_cnt=100)
Compute a given number of EOF coefficients to fit a given atmophere specification using the basic functions.
Write the resulting approximated atmospheric specification to file.

Parameters
prof_path: string Path and name of the specification to be fit

eofs_path: string Path to the .eof results from compute_eofs

output_path: string Path where output will be stored

eof_cnt: int Number of EOFs to use in building approximate specification

28 Chapter 1. Contents

stochprop Documentation, Release 1.0

stochprop.eofs.maximum_likelihood_profile(coeffs, eofs_path, output_path, eof_cnt=100,
coeff_label='None')

Use coefficient distributions for a set of empirical orthogonal basis functions to compute the maximum likelihood
specification

Parameters
coeffs: 2darrays Coefficients computed with stochprop.eofs.compute_coeffs

eofs_path: string Path to the .eof results from compute_eofs

output_path: string Path where output will be stored

eof_cnt: int Number of EOFs to use in building sampled specifications

stochprop.eofs.perturb_atmo(prof_path, eofs_path, output_path, stdev=10.0, eof_max=100, eof_cnt=50,
sample_cnt=1, alt_wt_pow=2.0, sing_val_wt_pow=0.25)

Use EOFs to perturb a specified profile using a given scale

Parameters
prof_path: string Path and name of the specification to be fit

eofs_path: string Path to the .eof results from compute_eofs

output_path: string Path where output will be stored

stdev: float Standard deviation of wind speed used to scale perturbation

eof_max: int Higher numbered EOF to sample

eof_cnt: int Number of EOFs to sample in the perturbation (can be less than eof_max)

sample_cnt: int Number of perturbed atmospheric samples to generate

alt_wt_pow: float Power raising relative mean altitude value in weighting

sing_val_wt_pow: float Power raising relative singular value in weighting

stochprop.eofs.pressure(z, T)
Computes the atmospheric pressure according to the US standard atmosphere model using a polynomial fit as-
suming an ideal gas

Parameters
z: float Altitude above sea level [km]

Returns
pressure: float Pressure of the atmosphere at altitude 𝑧 [mbar] and temperature 𝑇 [K]

stochprop.eofs.profiles_qc(path, pattern='*.dat', skiprows=0)
Runs a quality control (QC) check on profiles in the path matching the pattern. It can optionally plot the bad
profiles. If it finds any, it makes a new direcotry in the path location called “bad_profs” and moves those profiles
into the directory for you to check

Parameters
path: string Path to the profiles to be QC’d

pattern: string Pattern defining the list of profiles in the path

skiprows: int Number of header rows in the profiles

stochprop.eofs.sample_atmo(coeffs, eofs_path, output_path, eof_cnt=100, prof_cnt=250, output_mean=False,
coeff_label='None')

Generate atmosphere states using coefficient distributions for a set of empirical orthogonal basis functions

1.4. API 29

stochprop Documentation, Release 1.0

Parameters
coeffs: 2darrays Coefficients computed with stochprop.eofs.compute_coeffs

eofs_path: string Path to the .eof results from compute_eofs

output_path: string Path where output will be stored

eof_cnt: int Number of EOFs to use in building sampled specifications

prof_cnt: int Number of atmospheric specification samples to generate

output_mean: bool Flag to output the mean profile from the samples generated

1.4.2 Propagation Statistics

class stochprop.propagation.PathGeometryModel
Bases: object

Propagation path geometry statistics computed using ray tracing analysis on a suite of specifications includes
celerity-range and azimuth deviation/scatter statistics

Methods

build(arrivals_file, output_file[, ...]) Construct propagation statistics from a ray tracing
arrival file (concatenated from multiple runs most
likely) and output a path geometry model

display([file_id, subtitle, show_colorbar]) Display the propagation geometry statistics
eval_az_dev_mn(rng, az) Evaluate the mean back azimuth deviation at a given

range and propagation azimuth
eval_az_dev_std(rng, az) Evaluate the standard deviation of the back azimuth

at a given range and propagation azimuth
eval_rcel_gmm(rng, rcel, az) Evaluate reciprocal celerity Gaussian Mixture Model

(GMM) at specified range, reciprocal celerity, and az-
imuth

load(model_file[, smooth]) Load a path geometry model file for use

build(arrivals_file, output_file, show_fits=False, rng_width=50.0, rng_spacing=10.0, geom='3d',
src_loc=[0.0, 0.0, 0.0], min_turning_ht=0.0, az_bin_cnt=16, az_bin_wdth=30.0)

Construct propagation statistics from a ray tracing arrival file (concatenated from multiple runs most likely)
and output a path geometry model

Parameters
arrivals_file: string Path to file containing infraGA/GeoAc arrival information

output_file: string Path to file where results will be saved

show_fits: boolean Option ot visualize model construction (for QC purposes)

rng_width: float Range bin width in kilometers

rng_spacing: float Spacing between range bins in kilometers

geom: string Geometry used in infraGA/GeoAc simulation. Options are “3d” and “sph”

src_loc: iterable [x, y, z] or [lat, lon, elev] location of the source used in infraGA/GeoAc
simulations. Note: ‘3d’ simulations assume source at origin.

30 Chapter 1. Contents

stochprop Documentation, Release 1.0

min_turning_ht: float Minimum turning height used to filter out boundary layer paths if
not of interest

az_bin_cnt: int Number of azimuth bins to use in analysis

az_bin_width: float Azimuth bin width in degrees for analysis

display(file_id=None, subtitle=None, show_colorbar=True)
Display the propagation geometry statistics

Parameters
file_id: string File prefix to save visualization

subtitle: string Subtitle used in figures

eval_az_dev_mn(rng, az)
Evaluate the mean back azimuth deviation at a given range and propagation azimuth

Parameters
rng: float Range from source

az: float Propagation azimuth (relative to North)

Returns
bias: float Predicted bias in the arrival back azimuth at specified arrival range and azimuth

eval_az_dev_std(rng, az)
Evaluate the standard deviation of the back azimuth at a given range and propagation azimuth

Parameters
rng: float Range from source

az: float Propagation azimuth (relative to North)

Returns
stdev: float Standard deviation of arrival back azimuths at specified range and azimuth

eval_rcel_gmm(rng, rcel, az)
Evaluate reciprocal celerity Gaussian Mixture Model (GMM) at specified range, reciprocal celerity, and
azimuth

Parameters
rng: float Range from source

rcel: float Reciprocal celerity (travel time divided by propagation range)

az: float Propagation azimuth (relative to North)

Returns
pdf: float Probability of observing an infrasonic arrival with specified celerity at specified

range and azimuth

load(model_file, smooth=False)
Load a path geometry model file for use

Parameters
model_file: string Path to PGM file constructed using stoch-

prop.propagation.PathGeometryModel.build()

1.4. API 31

stochprop Documentation, Release 1.0

smooth: boolean Option to use scipy.signal.savgol_filter to smooth discrete GMM parame-
ters along range

class stochprop.propagation.TLossModel
Bases: object

Methods

build(tloss_file, output_file[, show_fits, ...]) Construct propagation statistics from a NCPAprop
modess or pape file (concatenated from multiple runs
most likely) and output a transmission loss model

display([file_id, title, show_colorbar]) Display the transmission loss statistics
eval(rng, tloss, az) Evaluate TLoss model at specified range, transmis-

sion loss, and azimuth
load(model_file) Load a transmission loss file for use

build(tloss_file, output_file, show_fits=False, use_coh=False, az_bin_cnt=16, az_bin_wdth=30.0,
rng_lims=[1.0, 1000.0], rng_cnt=100, rng_smpls='linear')

Construct propagation statistics from a NCPAprop modess or pape file (concatenated from multiple runs
most likely) and output a transmission loss model

Parameters
tloss_file: string Path to file containing NCPAprop transmission loss information

output_file: string Path to file where results will be saved

show_fits: boolean Option ot visualize model construction (for QC purposes)

use_coh: boolean Option to use coherent transmission loss

az_bin_cnt: int Number of azimuth bins to use in analysis

az_bin_width: float Azimuth bin width in degrees for analysis

display(file_id=None, title='Transmission Loss Statistics', show_colorbar=True)
Display the transmission loss statistics

Parameters
file_id: string File prefix to save visualization

subtitle: string Subtitle used in figures

eval(rng, tloss, az)
Evaluate TLoss model at specified range, transmission loss, and azimuth

Parameters
rng: float Range from source

tloss: float Transmission loss

az: float Propagation azimuth (relative to North)

Returns
pdf: float Probability of observing an infrasonic arrival with specified transmission loss at

specified range and azimuth

load(model_file)
Load a transmission loss file for use

32 Chapter 1. Contents

stochprop Documentation, Release 1.0

Parameters
model_file: string Path to TLoss file constructed using stoch-

prop.propagation.TLossModel.build()

stochprop.propagation.find_azimuth_bin(az, bin_cnt=16)
Identify the azimuth bin index given some specified number of bins

Parameters
az: float Azimuth in degrees

bin_cnt: int Number of bins used in analysis

Returns
index: int Index of azimuth bin

stochprop.propagation.run_infraga(profs_path, results_file, pattern='*.met', cpu_cnt=None, geom='3d',
bounces=25, inclinations=[1.0, 60.0, 1.0], azimuths=[- 180.0, 180.0,
3.0], freq=0.1, z_grnd=0.0, rng_max=1000.0, src_loc=[0.0, 0.0, 0.0],
infraga_path='', clean_up=False)

Run the infraga -prop algorithm to compute path geometry statistics for BISL using a suite of specifications and
combining results into single file

Parameters
profs_path: string Path to atmospheric specification files

results_file: string Path and name of file where results will be written

pattern: string Pattern identifying atmospheric specification within profs_path location

cpu_cnt: int Number of threads to use in OpenMPI implementation. None runs non-OpenMPI
version of infraga

geom: string Defines geometry of the infraga simulations (3d” or “sph”)

bounces: int Maximum number of ground reflections to consider in ray tracing

inclinations: iterable object Iterable of starting, ending, and step for ray launch inclination

azimuths: iterable object Iterable of starting, ending, and step for ray launch azimuths

freq: float Frequency to use for Sutherland Bass absorption calculation

z_grnd: float Elevation of the ground surface relative to sea level

rng_max: float Maximum propagation range for propagation paths

src_loc: iterable object The horizontal (latitude and longitude) and altitude of the source

infraga_path: string Location of infraGA executables

clean_up: boolean Flag to remove individual [..].arrival.dat files after combining

stochprop.propagation.run_modess(profs_path, results_path, pattern='*.met', azimuths=[- 180.0, 180.0, 3.0],
freq=0.1, z_grnd=0.0, rng_max=1000.0, ncpaprop_path='',
clean_up=False, keep_lossless=False, cpu_cnt=1)

Run the NCPAprop normal mode methods to compute transmission loss values for a suite of atmospheric speci-
fications at a set of frequency values

Note: the methods here use the ncpaprop_v2 version that includes an option for –filetag that writes output into a
specific location and enables simultaneous calculations via subprocess.popen()

Parameters

1.4. API 33

stochprop Documentation, Release 1.0

profs_path: string Path to atmospheric specification files

results_file: string Path and name of file where results will be written

pattern: string Pattern identifying atmospheric specification within profs_path location

azimuths: iterable object Iterable of starting, ending, and step for propagation azimuths

freq: float Frequency for simulation

z_grnd: float Elevation of the ground surface relative to sea level

rng_max: float Maximum propagation range for propagation paths

clean_up: boolean Flag to remove individual .nm files after combining

keep_lossless: boolean Flag to keep the lossless (no absorption) results

cpu_cnt [integer] Number of CPUs to use in subprocess.popen loop for simultaneous calcula-
tions

1.4.3 Gravity Wave Perturbation Analysis

stochprop.gravity_waves.BV_freq(H)

Compute the Brunt-Vaisala frequency defined as :math:`N = sqrt{

rac{g}{H}}` where :math:`H =

rac{rho0}{ rac{partial ho_0}{partial z}` is the density scale height

Parameters
H: float Scale height, :math:`H =

ho_0 imes left(
rac{partial
ho_0}{partial z}
ight)^{-1}` Returns: f_BV: float

Brunt-Vaisalla (bouyancy) frequency, :math:`f_BV = sqrt{

rac{g}{H}}`
stochprop.gravity_waves.cg(k, l, om_intr, H)

Compute the vertical group velocity for gravity wave propagation as :math:`cg =

rac{partial hat{omega}}{partial m} = rac{m k_h N}{ left(k_h^2 + m^2 + rac{1}{4H^2 ight)^{ rac{3}{2}}}`

Parameters
k: float

Zonal wave number [km^{-1}]

l: float Meridional wave number [km^{-1}]

om_intr: float Intrinsic frequency (relative to winds), defined as �̂� = 𝜔 − 𝑘𝑢0 − 𝑙𝑣0

H: float Scale height, :math:`H =

34 Chapter 1. Contents

stochprop Documentation, Release 1.0

ho_0 imes left(
rac{partial
ho_0}{partial z}
ight)^{-1}` Returns: c_g: float

Vertical group velocity of gravity waves

stochprop.gravity_waves.m_imag(k, l, om_intr, z, H, T0, d0)

Compute the imaginary wave number component to add attenuation effects The imaginary component
is defined as :math:`m_ ext{im} = -

u rac{m^3}{hat{omega}}`

where the viscosity is :math:`
u = 3.563 imes 10^{-7} rac{T_0 left(z ight)}{ ho_0 left(z ight)}`

Parameters
k: float

Zonal wave number [km^{-1}]

l: float Meridional wave number [km^{-1}]

om_intr: float Intrinsic frequency (relative to winds), defined as �̂� = 𝜔 − 𝑘𝑢0 − 𝑙𝑣0

z: float Absolute height (used for turning attenuation “off” below 100 km)

H: float Scale height, :math:`H =

ho_0 imes left(
rac{partial
ho_0}{partial z}
ight)^{-1}`

T0: float Ambient temperature in the atmosphere

d0: float Ambient density in the atmosphere

Returns: m_i: float

Imaginary component of the wavenumber used for damping above 100 km (note: 100
km limit is applied elsewhere)

stochprop.gravity_waves.m_sqr(k, l, om_intr, H)

Compute the vertical wavenumber dispersion relation for gravity wave propagation defined as
:math:`m^2 =

rac{k_h^2}{hat{omega}^2} left(N^2 - hat{omega}^2 ight) + rac{1}{4 H^2}`

Parameters
k: float

Zonal wave number [km^{-1}]

l: float Meridional wave number [km^{-1}]

1.4. API 35

stochprop Documentation, Release 1.0

om_intr: float Intrinsic frequency (relative to winds), defined as �̂� = 𝜔 − 𝑘𝑢0 − 𝑙𝑣0

H: float Scale height, :math:`H =

ho_0 imes left(
rac{partial
ho_0}{partial z}
ight)^{-1}` Returns: m_sqr: float

Vertical wave number squared, :math:`m^2 =

rac{k_h^2}{hat{omega}^2 left(N^2 - hat{omega}^2
ight) +
rac{1}{4 H^2}}`

stochprop.gravity_waves.perturb_atmo(atmo_spec, output_path, sample_cnt=50, t0=28800.0, dx=4.0,
dz=0.2, Nk=128, N_om=5, random_phase=False, z_src=20.0,
m_star=2.5132741228718345, env_below=True, cpu_cnt=None,
fig_out=None)

Use gravity waves to perturb a specified profile using the methods in Drob et al. (2013)

Parameters
atmo_spec: string Path and name of the specification to be used as the reference

output_path: string Path where output will be stored

sample_cnt: int Number of perturbed atmospheric samples to generate

t0: float Reference time for gravity wave propagation (typically 4 - 6 hours)

dx: float Horizontal wavenumber resolution [km]

dz: float Vertical resolution for integration steps [km]

Nk: int Horizontal wavenumber grid dimensions (Nk x Nk)

N_om: int Frequency resolution (typically 5)

ref_lat: float Reference latitude used to define the Coriolis frequency used as the minimum
frequency

random_phase: boolean Controls inclusion of random initial phase shifts

env_below: boolean Controls whether perturbations below the source height are included

cpu_cnt: int Number of CPUs to use for parallel computation of Fourier components (defaults
to None)

stochprop.gravity_waves.perturbations(atmo_specification, t0=14400.0, dx=2.0, dz=0.2, Nk=128,
N_om=5, ref_lat=40.0, random_phase=False, z_src=20.0,
m_star=2.5132741228718345, figure_out=None, pool=None)

Loop over Fourier components :math:`left(k, l, omega

ight)` and compute the spectral components for �̂� (𝑘, 𝑙, 𝜔, 𝑧𝑖𝑔ℎ𝑡) ,

:math:`hat{v}left(k, l, omega, z

ight)`, and �̂� (𝑘, 𝑙, 𝜔, 𝑧𝑖𝑔ℎ𝑡) . Once computed, apply inverse Fourier transforms to

obtain the space and time domain forms.

36 Chapter 1. Contents

stochprop Documentation, Release 1.0

Parameters
atmo_specification: string

Atmospheric specification file path

t0: float Reference time for gravity wave propagation (typically 4 - 6 hours)

dx: float Horizontal wavenumber resolution [km]

dz: float Vertical resolution for integration steps [km]

Nk: int Horizontal wavenumber grid dimensions (Nk x Nk)

N_om: int Frequency resolution (typically 5)

ref_lat: float Reference latitude used to define the Coriolis frequency used as the minimum
frequency

random_phase: boolean Controls inclusion of random initial phase shifts

figure_out: string Option to output a figure with each component’s structure (slows down
calculations notably, useful for debugging)

pool: multiprocessing.Pool Multprocessing option for parallel computation of Fourier
components

Returns
z_vals: 1darray

Altitudes of output

du_vals: 3darray Zonal (E/W) wind perturbations, du(x, y, z, t0)

dv_vals: 3darray Meridional (N/S) wind perturbations, dv(x, y, z, t0)

dw_vals: 3darray Vertical wind perturbations, dw(x, y, z, t0)

stochprop.gravity_waves.prog_close()

stochprop.gravity_waves.prog_increment(n=1)

stochprop.gravity_waves.prog_prep(bar_length)

stochprop.gravity_waves.prog_set_step(n, N, bar_length)

stochprop.gravity_waves.single_fourier_component(k, l, om_intr, atmo_info, t0, src_index, m_star,
om_min, k_max, random_phase=False,
figure_out=None, prog_step=0)

Compute the vertical structure of a specific Fourier component, :math:`hat{w} left(k, l, omega, z

ight), by first identifying critical layers and turning heights then using the appropriate solution form (free or
trapped solution) to evalute the component.

Parameters
k: float

1.4. API 37

stochprop Documentation, Release 1.0

Zonal wave number [km^{-1}]

l: float Meridional wave number [km^{-1}]

om: float Absolute frequency (relative to the ground) [Hz]

atmo_specification: string Atmospheric specification file path

t0: float Reference time for gravity wave propagation (typically 4 - 6 hours)

src_index: int Index of the source height within the atmo_info z values

m_star: float Source parameter m_* (default value, :math:`

rac{2 pi}{2.5} ext{ km}^{-1}` is for 20 km altitude source)
om_min: float Minimum absolute frequency used in analysis

k_max: float Maximum horzintal wavenumber value used in 1 grid dimension

random_phase: bool Flag to randomize initial phase of freely propagating solution

figure_out: string Path to output figure showing component charcterisitcs

prop_step: int Progress bar increment

Returns
u_spec: 1darray

Zonal wind perturbation spectrum, hat{u}(k, l, z, omega)

v_spec: 1darray Meridional wind perturbation spectrum, hat{v}(k, l, z, omega)

w_spec: 1darray Vertical wind perturbation spectrum, hat{w}(k, l, z, omega)

eta_spec: 1darray Displacement spectrum used to compute temperature and pressure per-
turbations

stochprop.gravity_waves.single_fourier_component_wrapper(args)

1.5 References and Citing Usage

The Empirical Orthogonal Function (EOF) analyses available in stochprop are part of ongoing joint research between
infrasound scientists at Los Alamos National Laboratory (LANL) and the University of Mississippi’s National Center
for Physical Acoustics (NCPA) and will be summarizing in an upcoming publication:

• Waxler, R., Blom, P., & Frazier, W. G., On the generation of statistical models for infrasound propagation from
statistical models for the atmosphere: identifying seasonal and regional trends. Geophysical Journal Interna-
tional, In Preparation

Stochastic, propagation-based models for infrasonic signal analysis were initially introduced in analysis of the Bayesian
Infrasonic Source Localization (BISL) and Spectral Yield Estimation (SpYE) framworks so that usage of path geometry
and transmission loss models should be cited using:

• Blom, P. S., Marcillo, O., & Arrowsmith, S. J. (2015). Improved Bayesian infrasonic source localization for
regional infrasound. Geophysical Journal International, 203(3), 1682-1693.

• Blom, P. S., Dannemann, F. K., & Marcillo, O. E. (2018). Bayesian characterization of explosive sources using
infrasonic signals. Geophysical Journal International, 215(1), 240-251.

38 Chapter 1. Contents

stochprop Documentation, Release 1.0

Gravity wave perturbation methods available here are leveraged from work by Drob et al. (2013) and Lalande & Waxler
(2016) as well as supporting work referenced in those manuscripts:

• Drob, D. P., Broutman, D., Hedlin, M. A., Winslow, N. W., & Gibson, R. G. (2013). A method for specify-
ing atmospheric gravity wavefields for long-range infrasound propagation calculations. Journal of Geophysical
Research: Atmospheres, 118(10), 3933-3943.

• Lalande, J. M., & Waxler, R. (2016). The interaction between infrasonic waves and gravity wave perturbations:
Application to observations using UTTR rocket motor fuel elimination events. Journal of Geophysical Research:
Atmospheres, 121(10), 5585-5600.

• Warner, C. D., & McIntyre, M. E. (1996). On the propagation and dissipation of gravity wave spectra through a
realistic middle atmosphere. Journal of Atmospheric Sciences, 53(22), 3213-3235.

See the documentation for the supporting packages (InfraGA/GeoAc, NCPAprop, InfraPy) for guidance on citing usage
of those methods.

1.5. References and Citing Usage 39

stochprop Documentation, Release 1.0

40 Chapter 1. Contents

PYTHON MODULE INDEX

s
stochprop, 3
stochprop.eofs, 26
stochprop.gravity_waves, 34
stochprop.propagation, 30

41

stochprop Documentation, Release 1.0

42 Python Module Index

INDEX

B
build() (stochprop.propagation.PathGeometryModel

method), 30
build() (stochprop.propagation.TLossModel method),

32
build_atmo_matrix() (in module stochprop.eofs), 26
build_cdf() (in module stochprop.eofs), 27
BV_freq() (in module stochprop.gravity_waves), 34

C
cg() (in module stochprop.gravity_waves), 34
compute_coeffs() (in module stochprop.eofs), 27
compute_eofs() (in module stochprop.eofs), 27
compute_overlap() (in module stochprop.eofs), 27
compute_seasonality() (in module stochprop.eofs),

28

D
define_coeff_limits() (in module stochprop.eofs),

28
density() (in module stochprop.eofs), 28
display() (stochprop.propagation.PathGeometryModel

method), 31
display() (stochprop.propagation.TLossModel

method), 32
draw_from_pdf() (in module stochprop.eofs), 28

E
eval() (stochprop.propagation.TLossModel method), 32
eval_az_dev_mn() (stoch-

prop.propagation.PathGeometryModel
method), 31

eval_az_dev_std() (stoch-
prop.propagation.PathGeometryModel
method), 31

eval_rcel_gmm() (stoch-
prop.propagation.PathGeometryModel
method), 31

F
find_azimuth_bin() (in module stoch-

prop.propagation), 33

fit_atmo() (in module stochprop.eofs), 28

L
load() (stochprop.propagation.PathGeometryModel

method), 31
load() (stochprop.propagation.TLossModel method), 32

M
m_imag() (in module stochprop.gravity_waves), 35
m_sqr() (in module stochprop.gravity_waves), 35
maximum_likelihood_profile() (in module stoch-

prop.eofs), 28
module

stochprop, 3
stochprop.eofs, 26
stochprop.gravity_waves, 34
stochprop.propagation, 30

P
PathGeometryModel (class in stochprop.propagation),

30
perturb_atmo() (in module stochprop.eofs), 29
perturb_atmo() (in module stochprop.gravity_waves),

36
perturbations() (in module stochprop.gravity_waves),

36
pressure() (in module stochprop.eofs), 29
profiles_qc() (in module stochprop.eofs), 29
prog_close() (in module stochprop.gravity_waves), 37
prog_increment() (in module stoch-

prop.gravity_waves), 37
prog_prep() (in module stochprop.gravity_waves), 37
prog_set_step() (in module stochprop.gravity_waves),

37

R
run_infraga() (in module stochprop.propagation), 33
run_modess() (in module stochprop.propagation), 33

S
sample_atmo() (in module stochprop.eofs), 29

43

stochprop Documentation, Release 1.0

single_fourier_component() (in module stoch-
prop.gravity_waves), 37

single_fourier_component_wrapper() (in module
stochprop.gravity_waves), 38

stochprop
module, 3

stochprop.eofs
module, 26

stochprop.gravity_waves
module, 34

stochprop.propagation
module, 30

T
TLossModel (class in stochprop.propagation), 32

44 Index

	Contents
	Authorship & License Info
	Installation
	Anaconda
	Installing Dependencies
	Propagation Modeling Methods
	InfraPy Signal Analysis Methods

	Installing stochprop
	Testing stochprop

	Stochastic Propagation Analysis
	Empirical Orthogonal Function Analysis
	Atmospheric Fitting, Sampling, and Perturbation
	Propagation Statistics
	Gravity Wave Perturbations
	Empirical Orthogonal Function Analysis
	EOF methods in stochprop
	Load Atmosphere Specifications
	Computing EOFs
	Compute Coefficients and Determine Seasonality
	Command Line interface

	Atmospheric Fitting, Sampling, and Perturbation
	Fitting an Atmospheric Specification using EOFs
	Sampling Specifications using EOF Coefficient Distributions
	Perturbing Specifications to Account for Uncertainty
	Command Line interface

	Propagation Statistics
	Path Geometry Models (PGMs)
	Transmission Loss Models (TLMs)

	Gravity Wave Perturbations
	Freely Propagation and Trapped Gravity Waves
	Damping, Source and Saturation Spectra, and Critical Layers
	Gravity Wave implementation in stochprop

	API
	Empirical Orthogonal Function Analysis
	Propagation Statistics
	Gravity Wave Perturbation Analysis

	References and Citing Usage

	Python Module Index
	Index

